structure of the compound and Fig. 2 a stereodiagram of the unit-cell packing.*

Related literature. The title compound is obtained as a ubiquitous, low-yield product in oxidation reactions of $\mathrm{W}_{2}\left\{\eta^{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\}_{2}(\mathrm{CO})_{4}$ with methylarsaoxane, cyclo- $\left(\mathrm{CH}_{3} \mathrm{AsO}\right)_{4}$, in sealed tubes in which the CO eliminated produces autopressurizations of 2.5-5 MPa ; under these conditions a portion of the W

[^0]starting material is carbonylated (Harper \& Rheingold, 1990). The title compound is isomorphous with its Mo analogue (Clegg, Compton, Ewington \& Norman, 1988).

We thank the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work.

References

Clegg, W., Compton, N. A., Ewington, R. J. \& Norman, N. C. (1988). Acta Cryst. C44, 568-570.

Harper, J. R. \& Rheingold, A. L. (1990). J. Am. Chem. Soc. 112, 4037-4038.
Sheldrick, G. M. (1985). SHELXTL Users Manual. Revision 5.1. Nicolet XRD Corp., Madison, WI, USA.

Structure of Di- μ-bromo-(4-thia-1,7-diazoniaheptane)bis[bromocopper(I)] and Bromo(1,4,7-triazaheptane)copper(II) Bromide

By J. C. A. Boeyens, S. M. Dobson and R. C. M. Mboweni
Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa

(Received 14 December 1989; accepted 20 June 1990)

Abstract

Cu}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}\right)\right], M_{r}=568.94\), monoclinic, $\quad C 2 / c, \quad a=14.104$ (2),$\quad b=7.414$ (1),$\quad c=$ 13.025 (4) $\AA, \beta=93.54(2)^{\circ}, V=1359 \cdot 5 \AA^{3}, Z=4$, $D_{x}=2.780 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $149 \cdot 0 \mathrm{~cm}^{-1}, F(000)=1064$, room temperature, final $R=0.0393$ for 1377 unique reflections. (II) $\left[\mathrm{CuBr}\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right] \mathrm{Br}, \quad M_{r}=326 \cdot 52$, orthorhombic, $P_{m n 2}{ }_{1}, a=8.716$ (1), $b=8.588$ (1), $c=6.337$ (1) \AA, $V=474.33 \AA^{3}, Z=2, D_{x}=2.286 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ (Мо $K \alpha)$ $=0.7107 \AA, \quad \mu=106.0 \mathrm{~cm}^{-1}, \quad F(000)=314$, room temperature, final $R=0.0394$ for 1271 unique reflections. In (I) the S atom lies on a twofold axis and is coordinated to two Cu atoms. Each Cu atom is tetrahedrally coordinated with one S and three Br atoms in its coordination sphere. Two Br atoms are bridging, giving rise to a polymeric structure. In (II) the Cu atom, both Br atoms and one N atom lie in a mirror plane and the geometry around the Cu atom is best described as square planar with one Br and three N donor atoms in the plane. The Br ion lies above and below the plane of the complex with a $\mathrm{Cu} \cdots \mathrm{Br}$ distance of $3 \cdot 12 \AA$.

Experimental. Crystals of (I) were obtained as follows. Methanol solutions of 4-thia-1,7-diazaheptane (daes) and copper dibromide were reacted according to the method of Taylor \& Barefield (1969) and the
expected yellow-green precipitate of $\mathrm{Cu}($ daes $) \mathrm{Br}_{2}$ was obtained. The precipitate was redissolved in water and drops of dilute HBr acid were added to prevent copper hydroxide precipitation. The solution was evaporated partially, filtered and then evaporated further until a solid started to appear. On standing, olive-green crystals formed in the browngreen solution, these were decanted and washed with ethanol. Crystals of (II) were grown by slow diffusion in a U-tube. Methanol was placed in the U-tube and on either side, separated by glass frits, were placed equimolar solutions of copper dibromide and 1,4,7-triazaheptane (dien). The system was stoppered and allowed to stand. The two solutions diffused to give a green mother liquor and from this dark-blue crystals of $\mathrm{Cu}($ dien $) \mathrm{Br}_{2}$ were obtained.

Intensities measured at room temperature on an Enraf-Nonius CAD-4 diffractometer (graphitemonochromated Mo $K \alpha$ radiation). Cell dimensions determined from least-squares refinement of 25 reflections ($14 \leq \theta \leq 21^{\circ}$). Reflections measured in the $\omega: 2 \theta$ scan mode [scan width $(0.6+0.35 \tan \theta)^{\circ}$ and variable scan speed]. Three standard reflections showed no significant variation over the data collection. Lp and absorption corrections (North, Phillips \& Mathews, 1968) applied to the data. Additional experimental details are given in Table 1.

Table 1. Experimental details

Crystal dimensions	$0.16 \times 0.21 \times 0.26 \mathrm{~mm}$	$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$
θ range	$3 \leq \theta \leq 27^{\circ}$	$2 \leq \theta \leq 30^{\circ}$
Range of h, k, l	$-18 \rightarrow 18,0 \rightarrow 9,0 \rightarrow 16$	$0 \rightarrow 12,0 \rightarrow 12,-8 \rightarrow 8$
Scan speed, ${ }^{\circ} \mathrm{min}^{-1}$	1.1-5.5	0.9-5.5
Transmission factors	48.0-99.7\%	50.9-99.7\%
Standard reflections	066460932	271404800
Reffs. measured	2460	1549
unique	1377	1271
$R_{\text {inn }}$	0.0153	-
observed $[F>4 \sigma F]$	1161	905
No. of parameters	70	52
Final R	0.0393	0.0394
$(\Delta / \sigma)_{\text {max }}$	$1 \cdot 36$	1.48
$(\Delta \rho)_{\text {min }} /(\Delta \rho)_{\text {max }}, \mathrm{e}^{\AA^{-3}}$	0.97, - 1.38	1.76, -1.99

Table 2. Fractional coordinates ($\times 10^{4}$) and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}, \mathrm{Cu}\right.$ and $\left.\mathrm{Br} \times 10^{4}\right)$ for (I) and (II)

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathrm{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	U_{eq}
(I)				
Cu	$5305(1)$	$4264(2)$	$1037(1)$	$324(3)$
$\mathrm{Br}(1)$	$3791(1)$	$3610(1)$	$97(1)$	$281(2)$
$\mathrm{Br}(2)$	$6409(1)$	$1817(1)$	$1477(1)$	$308(2)$
S	5000	$5843(4)$	2500	$19(1)$
$\mathrm{C}(1)$	$6007(6)$	$7333(12)$	$2745(7)$	$22(2)$
$\mathrm{C}(2)$	$5877(7)$	$8592(14)$	$3665(7)$	$29(2)$
N	$6755(5)$	$9706(11)$	$3826(7)$	$31(2)$
(II)				
Cu	0	$-1181(2)$	$95(20)$	$516(5)$
$\mathrm{Br}(1)$	0	$1606(1)$	0	$501(3)$
$\mathrm{Br}(2)$	0	$-1693(2)$	$4969(12)$	$415(3)$
$\mathrm{N}(1)$	0	$-3467(13)$	$-280(40)$	$44(4)$
$\mathrm{N}(2)$	$2273(9)$	$-1447(9)$	$361(49)$	$70(5)$
$\mathrm{C}(1)$	$1462(9)$	$-4141(11)$	$499(36)$	$63(5)$
$\mathrm{C}(2)$	$2721(11)$	$-3054(10)$	$-264(38)$	$44(3)$

Table 3. Distances (\AA) and angles $\left({ }^{\circ}\right)$ for (I) and (II)

(I)			
$\mathrm{Cu}-\mathrm{Br}(1)$	2.444 (1)	$\mathrm{Cu}-\mathrm{Br}(2)$	2.436 (2)
$\mathrm{Cu}-\mathrm{S}$	$2 \cdot 300$ (2)	$\mathrm{Cu}-\mathrm{Cu}$	$2 \cdot 990$ (3)
$\mathrm{Cu}-\mathrm{Br}\left(1^{1}\right)$	2.554 (1)	S-C(1)	1.812 (9)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.540 (12)	$\mathrm{C}(2)-\mathrm{N}$	1.492 (11)
$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{Br}(2)$	119.7 (1)	$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{S}$	108.3 (1)
$\mathrm{Br}(2)-\mathrm{Cu}-\mathrm{S}$	109.5 (1)	$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{Br}\left(1^{\text {' }}\right)$	$106 \cdot 6$ (1)
$\mathrm{Br}(2)-\mathrm{Cu}-\mathrm{Br}\left(1^{\prime}\right)$	$105 \cdot 1$ (1)	$\mathrm{S}-\mathrm{Cu}-\mathrm{Br}\left(1^{\prime}\right)$	$106 \cdot 9$ (1)
$\mathrm{Cu}-\mathrm{S}-\mathrm{S}(1)$	$105 \cdot 7$ (3)	$\mathrm{Cu}-\mathrm{S}-\mathrm{Cu}\left(1^{\text {ii) }}\right.$)	118.8 (1)
$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}\left(1^{\text {II }}\right.$)	$104 \cdot 8$ (6)	$\mathrm{Cu}-\mathrm{S}-\mathrm{C}\left(1^{\text {II }}\right.$)	110.5 (3)
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$	$112 \cdot 2$ (6)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$107 \cdot 9$ (7)
(II)			
$\mathrm{Cu}-\mathrm{Br}(1)$	2.395 (2)	$\mathrm{Cu}-\mathrm{Br}(2)$	$3 \cdot 120$
$\mathrm{Cu}-\mathrm{N}(1)$	1.977 (12)	$\mathrm{Cu}-\mathrm{N}(2)$	2.002 (9)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.484 (5)	$\mathrm{N}(2)-\mathrm{C}(2)$	1.488 (5)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 520$ (5)		
$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{N}(1)$	171.7 (9)	$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{N}(2)$	96.7 (2)
$\mathrm{Br}(1)-\mathrm{Cu}-\mathrm{Br}(2)$	99.5	$\mathrm{Br}(2)-\mathrm{Cu}-\mathrm{N}(1)$	88.8
$\mathrm{Br}(2)-\mathrm{Cu}-\mathrm{N}(2)$	84.3	$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	84.1 (3)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}\left(2^{\text {iii }}\right)$	$163 \cdot 7$	$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$	$110 \cdot 3$ (7)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(2)$	$110 \cdot 1$ (8)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$105 \cdot 9$ (7)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}\left(1^{\text {iii }}\right)$	118.3 (12)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$107 \cdot 2$ (8)

Symmetry code: (i) $1-x, 1-y,-z$; (ii) $1-x, y, \frac{1}{2}-z$; (iii) $-x, y, z$.

Both structures solved by Patterson method, full-matrix least-squares refinement based on F (Sheldrick, 1976). Anisotropic thermal parameters for non- H atoms located from difference map and refined, H atoms placed in calculated positions and refined with common isotropic temperature factor. At convergence $R=0.039$ for (I) and 0.039 for (II). Scattering factors for $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$ and Br given in SHELX76 (Sheldrick, 1976) and those for Cu corrected for f^{\prime} and $f^{\prime \prime}$ (Hamilton \& Ibers, 1974). Atomic parameters are given in Table 2, bond distances and

Fig. 1. Four asymmetric units of compound (I) showing the numbering scheme and the polymeric nature of the compound.

Fig. 2. One formula unit of compound (II) showing the atomic numbering scheme.

Fig. 3. Packing diagram for compound (I).

Fig. 4. Unit cell diagram for compound (II).
angles in Table 3,* the numbering schemes are shown in Figs. 1 and 2, Figs. 3 and 4 are packing diagrams for compounds (I) and (II) respectively.

Related literature. The bis copper(II) complex of unprotonated daes, $\mathrm{Cu}(\text { daes })_{2}\left(\mathrm{NO}_{3}\right)_{2}$, has been reported by Boeyens, Dobson \& Hancock, (1985). In compound (I), the $\mathrm{Cu}-\mathrm{S}$ bond length of $2 \cdot 300$ (2) \AA is similar to the mean $\mathrm{Cu}-\mathrm{S}$ bond length of $2.303 \AA$ found in the structure of bis(3,6-dithiaoctane)copper(I) tetrafluoroborate and falls in the range found for $\mathrm{Cu}^{1}-\mathrm{S}$ bond lengths in tetrahedral complexes ($2 \cdot 30-$ $2 \cdot 34 \AA$) (Baker \& Norris, 1977).

The compound $\mathrm{Cu}($ dien $)(\mathrm{SCN})_{2}$ (Cannas, Carta \& Marongiu, 1974) is square pyramidal with dien having a meridional coordination and the $\mathrm{Cu}-\mathrm{N}$ bond lengths are about $0.03 \AA$ longer than the corresponding $\mathrm{Cu}-\mathrm{N}$ bond lengths in compound (II) which is a square planar complex. The tetrasubstituted $\mathrm{Et}_{4} \mathrm{dien}$ coordinates via one axial and two equatorial sites to the Cu atom in the trigonal bi-

[^1]pyramidal $\mathrm{Cu}(\mathrm{Br}) \mathrm{N}_{3}\left(\mathrm{Et}_{4}\right.$ dien) complex (Ziolo, Allen, Titus, Gray \& Dori, 1972). In this complex the $\mathrm{Cu}-\mathrm{Br}$ bond length $[2 \cdot 586(1) \AA$] is longer than the $\mathrm{Cu}-\mathrm{Br}(1)$ bond length of $2 \cdot 395$ (2) \AA found in compound (II). The distance between $\operatorname{Br}(2)$ and Cu , $3 \cdot 12 \AA$, is similar to the $\mathrm{Cu} \cdots \mathrm{Br}$ distance $[3 \cdot 130$ (5) \AA, found in $\mathrm{Cu}(1,11$-diamino-3,6,9-trithiaundecane) Br by Drew, Rice \& Richards (1980).

References

Baker, E. N. \& Norris, G. E. (1977). J. Chem. Soc. Dalton Trans. pp. 877-882.
Boeyens, J. C. A., Dobson, S. M. \& Hancock, R. D. (1985). Inorg. Chem. 24, 3073-3076.
Cannas, M., Carta, G. \& Marongiu, G. (1974). J. Chem. Soc. Dalton Trans. pp. 553-555.
Drew, M. G. B., Rice, D. A. \& Richards, K. M. (1980). J. Chem. Soc. Dalton Trans. pp. 2503-2508
Hamliton, W. C. \& Ibers, J. A. (1974). Editors. International Tables for X-ray Crystallography, Vol. IV, pp. 99, 140. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
North, A. C. T., Phlips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Taylor, L. T. \& Barefield, E. K. (1969). J. Inorg. Nucl. Chem. 31, 3831-3839.
Ziolo, R. F., Allen, M., Titus, D. D., Gray, H. B. \& Dori, Z. (1972). Inorg. Chem. 11, 3044-3050.

A Redetermination of the Structure of Diethylenetriaminetrioxomolybdenum(VI)

By Pascual Román,* Antonio Luque and Juan M. Gutiérrez-Zorrilla
Departamento de Química Inorgánica, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

(Received 18 April 1990; accepted 5 June 1990)

Abstract

Mo}\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right) \mathrm{O}_{3}\right], \quad M_{r}=247 \cdot 11\), orthorhombic, Pbcm, $a=6.890$ (1), $b=10 \cdot 248$ (2), $c=$ $11 \cdot 691$ (2) $\AA, V=825 \cdot 5$ (3) $\AA^{3}, Z=4, D_{m}=1 \cdot 99$ (1), $D_{x}=1.99 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71069 \AA, \quad \mu=$ $15.19 \mathrm{~cm}^{-1}, T=295 \mathrm{~K}, F(000)=496, R=0.026, w R$ $=0.031$ for 2203 observed unique reflections with I $>3 \sigma(I)$. The Mo atom has a distorted octahedral coordination geometry and it is bonded strongly to three O atoms [mean Mo- $\mathrm{O}=1.75$ (1) \AA], but only weakly to the diethylenetriamine N atoms [mean Mo- $\mathrm{N}=2.32(1) \AA]$. The structure consists of $\left[\mathrm{Mo}\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right) \mathrm{O}_{3}\right]$ units linked by hydrogen bonds of type $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}$.

^[* To whom correspondence should be addressed.]

0108-2701/91/010188-03\$03.00

Experimental. Diethylenetriaminetrioxomolybdenum(VI), Mo (dien) O_{3}, was obtained by mixing aqueous solutions of diethylenetriammonium heptamolybdate trihydrate (Román, Luque, GutiérrezZorrilla \& Zúñiga, 1990) and molybdenum trioxide to a final pH of $5 \cdot 5$. After three weeks at room temperature, pale yellow plate crystals were isolated; they were washed with water and ether and stored in a desiccator with calcium chloride. The density was measured by flotation in $\mathrm{CHBr}_{3} / \mathrm{CCl}_{4}$ (Román \& Gutiérrez-Zorrilla, 1985). A crystal with approximate dimensions $0.30 \times 0.20 \times 0.15 \mathrm{~mm}$ was analyzed at 295 K with an Enraf-Nonius CAD-4 diffractometer, utilizing graphite-monochromated Mo $K \alpha$ radiation. Unit-cell parameters were obtained from a least-

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and further bond angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53240 (20 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53315 (12 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

